太阳城集团亚洲娱乐城-澳门太阳城集团娱乐城最新地址_百家乐电影网_全讯网xb112 (中国)·官方网站

全球勝任力講座(第23期)Deep Learning in Quantitative Finance 金融智能:量化金融中的深度學習

時間:2023-11-24 00:00    來源:     閱讀:

光華講壇——社會名流與企業家論壇第6682

主題:全球勝任力講座(第23期)Deep Learning in Quantitative Finance 金融智能:量化金融中的深度學習

主講人:Imperial College London   Panos Parpas

主持人:特拉華數據科學學院 余欣

時間:11月24日 21:00

舉辦地點https://us06web.zoom.us/j/81921528531 會議號: 819 2152 8531

主辦單位:特拉華數據科學學院 科研處

主講人簡介

Dr. Panos Parpas is a Professor of Computational Optimisation at the Department of Computing, Imperial College London. Before joining Imperial College, he was a postdoctoral fellow at MIT (2009-2011). Before that, he was a quantitative associate at Credit-Suisse (2007-2009).  He is interested in the development and analysis of algorithms for large scale optimisation problems. He is also interested in exploiting the structure of large scale models arising in applications.  His research has been published in leading journals such as SIAM Journal of Optimization, SIAM Journal of Scientific computing, SIAM Journal on Mathematical Finance among others. He has presented his research in several meetings, conferences and seminars and is frequently involved in the organisation of specialist workshops and meetings. He is an associate editor for two journals and was awarded a JP Morgan Faculty Award in 2019 and 2021.

Panos Parpas博士現任倫敦帝國理工學院計算系教授。在加入帝國理工學院之前,Panos Parpas是麻省理工學院的博士后(2009-2011)。在此之前,他是瑞士信貸(credit suisse)的量化研究員(2007-2009)。教授研究興趣聚焦大規模優化問題的算法開發和分析、應用中出現的大型模型結構。他的研究發表在SIAM Journal of Optimization, SIAM Journal of Scientific computing, SIAM Journal on Mathematical Finance等頂級國際學術期刊上。教授同時是兩家期刊的副主編,并于2019年和2021年獲得摩根大通學院獎。

內容簡介

In the financial industry in the era of big data, financial innovations represented by quantitative trading, risk control and management, and robo-advisors are surging, and the gain of innovative results is inseparable from the development of practical programming software. Among many programming languages, Matlab, C++, and Python are the most widely used. In this seminar you will have the opportunity to be introduced to the fundamental models and mathematical theories. In particular, in this module you will have the opportunity to learn to understand the time value of money, price derivatives using arbitrage pricing theory, optimally design investment strategies that trade-off risk with rewards, and use efficient numerical methods to solve optimisation models and simulate stochastic processes.

在大數據和AI時代的金融行業,以量化交易、風險控制與管理、AI顧問為代表的智能金融創新方興未艾,創新成果的獲得離不開實用編程軟件的開發。在許多機器學習算法編程語言中,MatlabC++Python是使用最廣泛的。在本次講座中將有機會了解基本模型和數學理論,了解金錢的時間價值、基于套利定價理論的價格衍生品、在風險與回報之間進行權衡以優化設計投資策略、以及使用有效的數值方法求解優化模型并模擬隨機過程。

西南財經大學  版權所有 webmaster@swufe.edu.cn     蜀ICP備 05006386-1號      川公網安備51010502010087號
赌博百家乐趋势把握| 皇城百家乐官网娱乐城| 台州市| 百家乐可以出千吗| 赌百家乐官网波音备用网| 百家乐是多少个庄闲| 金昌市| 百家乐官网赌场牌路分析| 娱乐城百家乐官网送白菜| 游戏百家乐的玩法技巧和规则| 真人百家乐官网代理分成| 赙彩百家乐游戏规则| 百家乐官网数据程序| 涂山百家乐官网的玩法技巧和规则 | bet365合作计划| 尊龙百家乐娱乐场| 澳门百家乐官网怎么看小路| 庞博百家乐的玩法技巧和规则| 大上海百家乐官网的玩法技巧和规则| 顶级赌场官方直营| 百家乐破解策略| 属狗与属猪能做生意吗| 没费用百家乐分析器| 百家乐官网平技巧| bet365彩票| 菲律宾百家乐试玩| 百家乐官网视频游戏道具| 大发888站| 百家乐博彩策略论坛| 真人百家乐官网试玩账号| 百家乐那里最好| 时时博百家乐官网的玩法技巧和规则 | 现场百家乐官网平台源码| 利博国际| 澳博娱乐| 杨筠松 24山| 百家乐好津乐汇| E乐博百家乐现金网| 金杯百家乐官网的玩法技巧和规则| 百家乐官网翻天粤qvod| 百家乐官网投注助手|